Implementing Tile-Drainage **Treatment Wetlands to Reduce Nitrogen Loading at** the Watershed Scale: Lake Bloomington Drinking Watersheds Project "Proof of Concept Program"

> David A. Kovacic Maria Lemke

(University of Illinois)

(The Nature Conservancy)

Miran Day and Michael P. Wallace (Unive

(University of Illinois, Ball State U.)

(University of Illinois)

These 7 Midwestern States produce 21% of the World's Corn

- The best rain-fed agricultural soils in the world
 - Highest fertilizer application in the world
 - Land has been drained to optimize production

Area in pink = 95 million acres

Contributes 90% of the nitrate-N flux to the Gulf 0.86 Million metric tons

80% of this nitrate-N flux (or 72% of the nitrate-N entering the Gulf) is a result of tile-drainage from the area in pink.

Goal is to move water to the Gulf as fast as possible

Focus on Mackinaw River basin

- Representative of the tiledrained Midwest
- Two sub-basins supply drinking water to 80,000+ people in Bloomington/Normal
- Lake Bloomington historically exceeds EPA's 10 ppm drinking water nitrate standard
- Urgent need to implement practices that reduce nitrates yet maintain current agricultural production

Goal:

To construct Tile-Drainage wetlands throughout the Lake Bloomington watershed.

To reduce nitrate loading to Lake Bloomington, the source of water for 80,000 people and Bloomington and Normal, IL.

A proof of concept study that proposes a more sustainable solution to pollution rather than a sole engineering solution Mackinaw River Drinking Watersheds Project

Innovation Leads to Clean Water Through Wetlands

Jeff Walk, Maria Lemke, Krista Kirkham & Ashley Maybanks

Suzy Friedman, Terry Noto, Karen Chapman

n cn

SOIL & WATER

Jonathan Thayn

Kent Bohnhoff

Jackie Kraft

Natural Resources

Conservation Service

David Kovacic , Mike Wallace, Miran Day

Jonathan Evers

Rick Twait

Mackinaw

Drinking

Project

Natersheds

River

Why Tile-Drainage Wetlands???? **Typical tile drainage line shunts** water and dissolved NO₃ (nitrate) from root zone

Berm

Margin

River

NO

NO₃

Constructed

Wetland

NO₃

Drain Tile

NO₃

Why Tile-Drainage Wetlands???? Constructed Wetlands Could Function to Remove Nitrogen from Drainage Water

River

Subsequent Wetland Studies support our initial results

- Research with the city of Bloomington at Lake Bloomington
- Research with The Nature Conservancy at the Franklin Demonstration Farm
- Adoption of this work in Iowa
 - implementing this concept in IOWA CREP wetlands program
- We believe that tile-drainage wetlands can help to reduce nitrate loading to drinking water reservoirs and to rivers

"Global Rule" Verhoven et al. 2006 Wetland nitrate removal data (U.S., Sweden, & China) suggests that a ratio of 2-7% wetlands to watershed area can significantly improve water-quality

To obtain 45% NO₃ removal Must convert approximately 2.5% of the cropped area to wetlands or 1,075 acres of the LB watershed

Economic Analysis - Comparing Wetland to Ion Exchange Removal Costs per kg N

Based on TNC's Franklin Demonstration Farm Wetlands Report – by R.E. Heimlich

However !

- Nobody has shown that tile-drainage wetlands can improve the quality of water leaving an entire watershed.
- Before investing in this strategy throughout the Midwest we must show that tile-drainage wetlands can improve water quality at the watershed scale.
- We are collaborating with TNC & EDF in a proof-of-concept Tile-drainage wetland study in the Lake Bloomington, IL watershed.

Funding agencies like to see quick results.

- Proximate goal: (3-5 years)
 - Establish tile –drainage wetlands on small paired sub-watersheds to demonstrate the effectiveness of tile-drainage wetlands in reducing nitrate- N at the watershed or stream scale.
- Ultimate goal: (10-20 years)
 - Use constructed wetlands to reduce nitrate-N in Lake Bloomington

A small sub-watershed approach offers the best chance to find a cause and effect relationship of wetlands and water quality.

Lake Bloomington Watershed Workshop LA 336/438 Studio/Workshop Department of Landscape Architecture 2011

University of Illinois at Urbana-Champaign

• Using the following:

- 1. USGS maps
- 2. Soil maps
- 3. Hydrology maps
- 4. USGS DEM data
- 5. Color infrared photography
- 6. NRCS aerial photography
- 7. Google earth
- 8. Bing maps
- 9. Lidar data
- 10. Parcel data

11. Range and township maps

12. ArcGIS

Task of workshop

Site wetland and control paired watersheds

Stream Order/Watershed Order

Fig. 9.1 Stream order classification according to rank in the drainage network. This follows the scheme originally defined by American hydrologist Robert Horton.

Kovacic

Summer 2011 conducted an on the ground evaluation

- Only one pair met our initial requirements.
 - A tile drainage opening into a stream, so that we could readily test if wetlands placed at the end of a tile drainage system could change stream water

quality.

Tile Order/Tile Drainage Order confusion

Tile Interception Wetlands

Kovacic

Tile Drainage Interception Wetlands

Critical Difference between Tile Drainage and Tile Interception Wetlands is the Lack of an Adjacent Open Stream Channel

Early Conclusions

- What we anticipated does not exist to a great extent –
- We have found a few sites that will work for experimental paired watershed sites (Tile to open stream systems).
- We have to create a new definition of a watershed for our project. This would be based on a stream hierarchy system, but we would be looking at tiles only.
- "Streams" do exist, but are largely underground. Most sites where open streams can be found drain huge areas 1,000 - 4,000 acres

Early Conclusions

- INTERCEPTION WETLANDS must be the approach that we use
- To site wetlands in large watersheds will require the creation of a major database that allows us to work remotely
- The database must be a highly structured system to organize and study the watershed and reduce time and labor.
- Database must allow us to identify tile drains in the field so that we can intercept them with wetlands.

Requirements of the database

- 1. Provide unique naming system for all sub-basins in the watersheds
- 2. Determine surface drainage characteristics at several tiers
- 3. Provide maximum definition of elevations
- 4. Determine surface characteristics
- 5. Provide a tool to locate tile drainage systems and determine effective drainage

- 6. Determine land ownership
- 7. Determine existing wetlands, depressions
- 8. Determine areas of any basin or any plot of ground
- 9. Provide information for the location, sizing, and construction of wetlands
- 10. Provide a database that can be adapted for use by all project workers

- Using the following:
 - USGS maps
 Soil maps
 - 3. Hydrology maps
 - 4. USGS DEM data
 - 5. Color infrared photography
 - 6. NRCS aerial photography
 - 7. Google earth
 - 8. Bing maps
 - 9. Lidar data
 - 10.Parcel data
 - 11.Range and township maps
 - 12.ArcGIS

Hypothetical Hierarchical Nesting of sub-basins (Tiers 1 through) in the Lake Bloomington watershed

Fig. 9.2 Illustration of the nested hierarchy of lower-order basins within a large drainage basin.

Area Part of Tier-2-

Tier 3 boundary

Hypothetical Hierarchical Nesting of sub-basins (Tiers 1 through) in the Lake Bloomington watershed

Outreach Program

- Most important part of project
- Rely on voluntary Landowner Cooperation
- Using the above information specialists

Kent Bohnhoff

Jackie Kraft

Ashley Maybanks

Protecting nature. Preserving life.™

The Nature Conservancy

 identify the optimal areas for wetland construction, contact the landowners, and work with those interested in the program.

CP-39 Constructed Wetlands Program

