The Illinois River CREP: Sediment and Nutrient Delivery Assessment

by

Mike Demissie, Ph.D., P.E., D.WRE Principal Scientist and Director Center for Watershed Science Illinois State Water Survey Champaign, IL

Acknowledgments

Project Management – IDNR/ORC

- Debbie Bruce
- Richard Mollahan

Project Staff – IDNR/SWS

- Laura Keefer
- Amy Russell
- Jim Slowikowski
- Kip Stevenson

- Mike Smith
- Yanqing Lian
- Momcilo Markus

Outline

- Background on the Illinois River
 - Sedimentation issues
- Restoration initiatives
 - CREP
- Evaluation methods
 - Monitoring
 - Modeling
 - Sediment budget
- Summary

Background

- > Illinois River Issues
 - Sedimentation
 - Hydrology
 - Water Quality
 - Habitat Degradation

Sedimentation in Peoria Lake

Illinois River Conservation Reserve Enhancement Program (CREP)

- Joint federal/state program with the goal of improving water quality and wildlife habitat in the Illinois River Basin
- Voluntary program
- Land retirements, easements & conservation practices
- > The two main goals are:
 - 1. "Reduce the amount of silt and sedimentation entering the mainstem of the Illinois River by 20 percent."
 - 2. "Reduce the amount of phosphorous and nitrogen in the Illinois River by 10 percent."

CREP Programs

USDA-FSA Program (Federal)

- Eligible acres enroll for 15-year conservation easements
- Illinois state option
 - Extend federal contract to 15-year, 35-year, or permanent conservation easements

Eligible agricultural land

- Within 100-year floodplain
- Highly erodible land (HEL) with erodibility index ≥12 adjacent to riparian areas
- Wetlands farmed under natural conditions or prior converted wetlands

Evaluation Methods

> Monitor selected watersheds for changes in:

- Land use
- Streamflow
- Sediment transport
- Nutrient transport

Develop tools to assess and evaluate the effectiveness of CREP in reducing sediment & nutrient delivery to the Illinois River

- Sediment and nutrient budgets
- Development of watershed models
- Statistical tests and analysis

Land Use Changes

State CREP Contract Distributions

CREP Contracts for Court and Haw Creeks in the Spoon River Watershed

Monitoring

CREP Monitoring Stations

Station ID	Name	Drainage area	Watershed
301	Court Creek	66.4 sq mi	Spoon River
		(172 sq km)	
302	North Creek	26.0 sq mi	Spoon River
		(67.4 sq km)	
303	Haw Creek	55.2 sq mi	Spoon River
		(143 sq km)	
305	Swan Creek	98.1 sq mi	Spoon River
		(254 sq km)	
306	Cedar Creek	146.2 sq mi	Spoon River
		(379 sq km)	
05569500	Spoon River at	1072 sq mi	Spoon River
	London Mills	(2776 sq km)	
05570000	Spoon River at	1636 sq mi	Spoon River
	Seville	(4237 sq km)	
201	Panther Creek	16.5 sq mi	Sangamon River
		(42.7 sq km)	
202	Cox Creek	12.0 sq mi	Sangamon River
		(31.1 sq km)	

Parameters Analyzed and Frequency of Sampling

Parameter	Daily	Weekly (Tier I)	Monthly (Tier II)	During storm events
Suspended Sediment	*	*	*	*
Nitrate-N		*	*	*
Ammonium-N		*	*	*
Orthophosphate		*	*	*
Nitrite-N			*	*
Total Kjeldahl Nitrogen (TKN)			*	*
Total Phosphorus			*	*
Total dissolved Phosphorus			*	*

Hourly Discharge at Court Creek (Station 301)

Hourly Discharge at Court Creek (Station 301) Water Year 2002

Annual Discharge (cfs)

Illinois River

Sangamon River

(0)

Spoon River

Summary

- In the long term, CREP is the best restoration program under implementation for the Illinois River basin.
- Availability of long-term data is extremely useful for assessing changes in watersheds: land use, hydrology, water quality, sediment, and habitat.
- We can document and detect change over time however, it should be acknowledged that it takes time to see some of these changes and thus quick assessments are not reliable.
- With the collection of the appropriate data and the proper use of watershed models and statistical methods, we can evaluate the effects of watershed projects successfully.

Sediment Budget of the Illinois River (1981-2000)

- Average annual sediment delivery to the Illinois River valley –11.0 million tons
- Average annual sediment discharge at Valley City – 4.9 million tons
- Average annual sedimentation –
 6.1 million tons
- Percent deposited 55%
- The Spoon and La Moine Rivers had the highest sediment yield rates for the period of analysis.

Influence of Floodplain & Riparian Corridor on Stream Hydraulics

Time

Restoration Initiatives

1997 – Integrated Management Plan for the Illinois River Basin (State of Illinois, Office of the Lieutenant General)

1998 – Illinois River CREP (USDA & State of Illinois)

2000 – Illinois River Basin Ecosystem Restoration Project (USCOE & State of Illinois)

Model Development

- Hydrologic model developed for the entire Illinois River Basin
- Sediment and nutrient transport models under development for the Spoon River watershed
- Once the models are fully developed, apply the models to evaluate impacts of conservation practices on Illinois River basin hydrology, sediment and nutrient transport

Illinois River Restoration

- Integrated Management Plan for the Illinois River Watershed (Stakeholds led)
- Conservation Reserve Enhancement Program (CREP) for the Illinois River Basin
- Ecosystem Restoration of the Illinois River
- Comprehensive Management Plan (agency partnership and stakeholder participation throughout the whole process)

