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Introduction 
 
Lake Pittsfield is an 89 ha lake located near the city of Pittsfield in the 10,276 ha Blue Creek 

watershed within Pike County, western Illinois (Figure 1). Lake Pittsfield was constructed in 

1961 as a flood control reservoir.  The lake is a highly valued recreational area and serves as the 

primary water supply for the city of Pittsfield, a community of about 4,600 people.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sediment deposition into Lake Pittsfield has been the dominant water quality problem facing 

local residents and recreational users. Lake Pittsfield is located in a region of the state that has 

the highest in-stream sediment yields (Bonini et al. 1983). The Natural Resources Conservation 

Service (NRCS) formerly designated the region as part of the critical sediment-producing area of 

the Upper Mississippi River basin (Crews 1983). Earlier lake sedimentation surveys concluded 

that the lake lost almost 25% of its original storage capacity between1961 and 1992. This 

information along with other bathymetry and aerial data indicated that the lake‟s surface area 

Figure 1. Location of Lake Pittsfield 
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decreased by more than 16% from 106 ha in 1961 to 89 ha by 1994.  Sediment was believed to 

be entering Lake Pittsfield from sources that included sheet and rill erosion, gullies, stream 

channels and the lake‟s shoreline. Lake Pittsfield was classified as being extremely eutrophic 

(Benton and Associates, Inc. 1989; Twait and Ramen 1993) because of excess nutrient loads 

transported both with the high sediment loads and dissolved in the water.  

 

State and federal agencies, the city of Pittsfield and local landowners have been applying erosion 

control Best Management Practices (BMPs) (USDA 2003), since the 1970s to reduce both 

damages from high erosion on the land and the effect of high sediment deposition in the lake. 

These earlier practices included terracing, grassed waterways, filter strips, exclusion of livestock, 

reduction or other improvements in tillage, landowner education programs and “hard structures” 

(i.e., drop structures, tiling, dams, etc.).  Four lake sedimentation surveys were conducted 

between 1961 and 1992. The first survey was conducted in 1974 by Benton and Associates, Inc, 

with advice and equipment provided by the Illinois State Water Survey (ISWS) (Benton and 

Associates, Inc., 1989). The second survey was conducted in 1979 where the ISWS supervised a 

field crew from Benton and Associates and prepared all of the calculations (Benton and 

Associates, Inc., 1989; Bogner 1979). The 1985 and 1992 lake sedimentation surveys were 

conducted by the ISWS. In 2004 the ISWS conducted a partial sedimentation survey to re-

establish baseline conditions in the dredged areas of the lake (Bogner unpublished, 2004).  These 

surveys showed that conservation practices had reduced sediment delivery to Lake Pittsfield 

(Bogner 1986, Bogner 1979, Allgire 1993).  However, significant concern remained because the 

rate of lake sedimentation was still too high to ensure flood control protection and sustain 

biological and water-supply functions. While interested groups recognized that erosion is a 

natural process that can be minimized but not stopped, they remained determined to reduce the 

rate of erosion in the watershed and the amount of sediment filling Lake Pittsfield. As Lake 

Pittsfield continued to fill with sediment, these local groups realized there was a need to take a 

more aggressive approach to address conservation issues. 

 

In 1994, the United States Environmental Protection Agency (USEPA) funded, and the Illinois 

Environmental Protection Agency (IEPA) administered, the Lake Pittsfield National Monitoring 

Program (LPNMP) project. The IEPA and USEPA contracted the ISWS to investigate the 

effectiveness of erosion control practices in reducing sediment transport to Lake Pittsfield.  

Monitoring the effects of various erosion control land treatment practices proved a challenging 

task because erosion and sediment reduction efforts were already being implemented in the 

watershed. Therefore, baseline conditions were already changing and detection of future change 

would need to be examined carefully to distinguish influencing factors. 
 
Study Area 
 

The study area included 2,815 ha of the Blue Creek watershed above Lake Pittsfield. Land use in 

the study area is primarily cropland (48%), forest/shrub (21%), pasture (20%), water (4%), 

developed impervious surface (4%) and parks (3%). Agriculture consists primarily of row crops 

such as corn and soybeans and includes small livestock operations such as hog production, 

generally on open lots, and some cattle on pasture. Land use changes have been notable in the 

Blue Creek watershed above Lake Pittsfield. In fact, between 1979 and 1993 (Figure 2), 12% of 
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the watershed was converted from row crops to grasslands, roadways, and homesteads 

(Roseboom et al. unpublished, 1993).  

 

 

 

 

 

Lake Pittsfield and its watershed receive approximately1000 mm of precipitation per year, most 

of which falls in the spring, summer, and early fall. Many of the more intense rainfall events 

occur in the winter-spring season (January-June). Mean annual temperature in this area over the 

last 13 years (1995-2008) is 11.7 °C (Midwestern Regional Climate Center 2008). 

 

The Blue Creek watershed above Lake Pittsfield drains an area of Illinoisan-aged glacial deposits 

that are thousands of years older than the Wisconsinan-aged glacial deposits in northeastern 

Illinois. The Clinton Keomah, Tama Muscatine and Haymond Wakeland soil series comprise 

47%, 17% and 10% of the watershed, respectively (USDA-NRC S 2006). Most soils in the upper 

watershed are loess-derived and can be highly erosive. These soils developed under prairie 

vegetation. Soils in the middle and lower portion of the watershed developed on a steeper, 

forested landscape. 

 

Though soil in the entire watershed is generally of the same age, the western part of the 

watershed has a more highly dissected drainage network and steeper slope angles than that of the 

Figure 2.  Land use in the Lake Pittsfield watershed, 1979 (left) and 1993 (right). 
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eastern third of the watershed. The western portion of the watershed in the study area also occurs 

along the eastern boundary of a driftless (nonglaciated) area, one of the few nonglaciated areas 

occurring in the state. The eastern side of this nonglaciated area is adjacent to a topographically 

high drainage divide that delineates the western boundary of the Blue Creek watershed study 

area. This drainage divide is an Illinoisian-aged moraine that has been highly dissected because 

of its higher local relief compared to the less dissected eastern third of the study area. In some 

places it is as much as 30 m above the Blue Creek floodplain and 15 m above the eastern 

(opposite) drainage divide. As such, the drainage patterns of the western two-thirds and eastern 

third of the study area are relatively distinct. Topography of the upper watershed has 

comparatively gentle slopes and generally grassed gullies. The rolling land has many narrow 

forested ravines, particularly in the lower portion of the watershed. The middle and lower 

sections of stream longitudinal profiles are comparatively steep.  

 

Land Treatment  
 
Early efforts to curb the lake sedimentation problem mainly used vegetative practices such as 

grassed waterways, reduced tillage systems, filter strips, and some structural methods such as 

terraces and dry dams to decrease runoff volumes and velocities, and reduce net erosion. As a 

result, annual rates of sedimentation in the lake dropped from 13 t/ha in 1974 to 7.7 t/ha in 1979 

following introduction of vegetative controls in 1979 (Lee et al. 1981, Lee et al. 1983, Roseboom 

et al. unpublished, 1993). Later ISWS lake sedimentation surveys continued to show reductions 

in sediment deposition in Lake Pittsfield following the 1979 controls. In fact, although heavy 

flooding in the Midwest caused severe damage in the watershed in 1993, sediment yields in the 

Lake Pittsfield watershed were still half the 1974 rate of 13 t/ha. However, the data also 

confirmed that the lake was continuing to fill with sediment at an excessive rate.  However, as 

Davenport (1983) indicated, in Illinois, erosion control had been used as a surrogate for sediment 

control because sediment control is less amenable to quantitative analysis and from a water 

quality point of view, erosion control practices are not necessarily a control of sediment. Clearly, 

additional conservation practices would be required to protect area infrastructures, the City of 

Pittsfield's water supply, and ecological function in the lake and its watershed. 

 

From 1993 to 1995, USDA Water Quality Incentive Project (WQIP) money funded additional 

conservation practices such as conservation tillage, integrated crop management, livestock 

exclusion, filter strips, and wildlife habitat management. The Pike County Soil and Water 

Conservation District (SWCD) conducted an information and education program on the 

implementation of BMPs for controlling sediment, fertilizers, and pesticides. In 1994, the 

USEPA, IEPA, and the ISWS, in cooperation with the City of Pittsfield and the Pike County 

SWCD, formally initiated the Lake Pittsfield project as a component of the USEPA Section 319 

National Nonpoint Source Monitoring Program to further control the rate of sedimentation in 

Lake Pittsfield and to document the effectiveness of the sediment control practices through 

monitoring. 

 

The SWCD/NRCS constructed 29 Water and Sediment Control Basins (WASCOBs) in 1995 as 

part of the LPNMP project. WASCOBs consist of earth embankments generally constructed 

across a sloping area of the farmed landscape and smaller drainage channels to increase sediment 

trapping and water detention. These structures often help sustain agriculture on sloping land, 
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reduce watercourse and gully erosion, reduce on-site and downstream runoff, and improve 

downstream water quality (NRCS 2003). In the Blue Creek watershed above Lake Pittsfield, 

WASCOBs were installed to meet specific standards on sites that had:  

 

 generally irregular topography,  

 problems with watercourse or gully erosion,   

 runoff and sediment damage to land and infrastructure,  

 suitable soil and site conditions, and  

 adequate outlets for drainage 

 

The geomorphologic conditions and available monitoring data in this watershed strongly 

suggested that most sediment was being delivered to the lake from Blue Creek. Therefore, in 

1996 a sediment retention basin (SRB) was constructed at the mouth of Blue Creek. The SRB 

was constructed by damming Blue Creek just above Lake Pittsfield for the purpose of retaining 

sediment, providing water detention for stormwater control and establishing higher quality plant 

and animal habitat. The SRB was constructed to have a 337,842 m
3
 water holding capacity at the 

top level of the dam and a design life of 50 years.  Sediment basins such as the SRB described 

here are generally effective in trapping sediment that flows into them, but some sediment does 

pass through. Therefore, this SRB is used in concert with watershed erosion control BMPs to 

reduce the net amount of sediment delivered to the lake. 

 

Construction of WASCOBs was only possible where landowners were willing to participate. Of 

the 53 WASCOBs originally planned for implementation in the watershed, only 29 (55%) were 

constructed. Construction of WASCOBs occurred between May and October of 1995. 

Subwatersheds and the location of WASCOBs within those watersheds as well as the SRB are 

shown in Figure 3. Thirty-six percent of the entire watershed above Lake Pittsfield drains into 

the 29 WASCOBs. While subwatershed I had the smallest overall watershed area (170.5 ha), 

subwatershed I had the highest percent of subwatershed area (69%) draining into WASCOBs. 

Subwatershed D had the largest watershed area (710.6 ha), and the second highest percent of 

subwatershed area (45%) draining into WASCOBs. Subwatershed C was 634.1 ha in size, of 

which 41% drained into WASCOBs. Subwatershed B included 672.2 ha, of which 13.4% drains 

into WASCOBs. The entire 627.7 ha of Subwatershed A drains directly into the lake. 

Approximately 214.9 ha or 34% drains directly into WASCOBs prior to reaching the lake. 

 

Reduction of sediment delivery to the mainstem from other BMPs installed prior to or during the 

construction of WASCOBs was anticipated to be minimal below the WASCOBs located in 

subwatersheds B, C, and D. An inspection of the NRCS 1993 aerial flyovers (USDA-Aerial 

Photography Field Office 1993) revealed that 66 small ponds were constructed before 1993 

throughout the study area. Also, other conservation BMPs may have been installed during 

construction of the WASCOBs and may have contributed to sediment reduction. However, the 

actual number and types of BMPs installed, potential amount of sediment stabilized, and values 

for sediment transport reduction from other BMPs that may have been installed during the 

construction of the WASCOBs are unknown. Funding limitations did not allow detailed 

monitoring below the location of the SRB, but sediment transport to Lake Pittsfield from these 

watershed source areas was considered to be minor compared to areas draining into the SRB. 
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Methods  
 
A before/after-BMP monitoring design was devised for the LPNMP effort. Project monitoring 

lasted ten years from November 1992 through August 2003.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Monitoring was initiated in 1992 prior to the formal initiation of the LPNMP in 1994 because 

interest from the local groups and funding opportunity from USEPA and IEPA existed prior to 

official LPNMP designation. 

 

Rainfall was collected using tipping bucket rain gauges connected to ISCO flow meters that 

recorded both flow and rainfall data. As part of the LPNMP, a series of eight stream sampling 

and flow gauging stations and four precipitation gauges were installed across five subwatersheds 

in the study area. In addition, three water quality stations were located in the lake (Figure 4). Due 

to logistical and funding issues however, stream sampling was reduced to four gauging stations 

Figure 3. Location of subwatersheds, WASCOBs and the SRB 
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on the main channel by 1995. Discharges were manually measured in accordance with United 

States Geological Survey procedures (Rantz 1982) at each station during storm events using a 

Marsh-McBirney Flo-Mate model 2000 velocity meter. These measured discharges were used to 

develop rating curves. Gage height data collected by the ISCO flow meters during storm events 

were used in conjunction with the rating curves to obtain stream discharge values. 

 

Subwatersheds were determined by station locations and topography. Sediment monitoring 

stations were located at the mouth of each of the subwatersheds as shown in Figure 4. Sediment 

loads were calculated by numeric integration of Total Suspended Solids (TSS) (hereafter will be 

referred to as TSS or „sediment‟) concentration and discharge over sampling time intervals. 

Streambank erosion was monitored by establishing stream cross-sections to determine channel 

morphological change over time. 

 

At stations B, C, D, and H (Figure 4), sediment samples were collected at 15-minute intervals 

with an automatic sampler to ensure sample collection during rising and maximum discharge 

stages of storm events. The ISCO flow meters were set to activate the samplers after a one-foot 

rise above base level of the stream. After 1998, sampling interval was increased to 1 hour to 

reduce cost. At all stations, manual samples were collected using a DH 59 sampler.  From 1992 

to 1995 grab samples were taken from the spillway at the dam of Lake Pittsfield (Station A) 

during storm events so some caparisons could be made between TSS coming into the lake at 

Station B and going out of the lake at Station A. It was not practical to monitor discharges at 

Station A so loading yields were not calculated. Total suspended solids coming out of the lake at 

Station A were very low compared to TSS values coming in to the lake at Station B indicating 

that the vast majority of sediment coming in to Lake Pittsfield at Station B was being deposited 

in the lake. Monthly sediment samples were collected at station C to determine sediment yield at 

stream base levels. Samples were analyzed for TSS gravimetrically after being dried at 105
o 
C 

following the specified USEPA methodology (USEPA 1983). It should be noted, however, that 

the analysis used for this study determined TSS and not Suspended Sediment Concentrations 

(SSC) as currently performed by the ISWS Sediment Laboratory. 

 

Samples for water quality analysis were obtained between 1993 and 1995 from the three water 

quality stations in the lake using methods described in the IEPA Quality Assurance and Field 

Methods Manual (1987). Water samples were obtained from various depths and analyzed for 

dissolved oxygen, transparency, total and volatile suspended solids, pH, alkalinity, conductivity, 

ammonia, nitrite, nitrate, total nitrogen, ortho phosphate, total phosphate, and atrazine (USEPA 

1983, USEPA 1991, USEPA 1991, Twait and Raman 1993). 
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From February 1992 to February 1998, sediment samples and lake water quality samples were 

analyzed at the ISWS laboratories in Peoria and Champaign, Illinois. Due to changes in ISWS 

laboratory certification status in 1998, sediment samples were thereafter sent to the IEPA 

certified Peoria Disposal Company (IELAP, section 1, 2007) laboratory in Peoria, Illinois for 

analysis. Duplicate and “spiked” samples were analyzed at all three of these laboratories and 

used to ensure sample quality control.  

 

Figure 4. Monitoring stations in the watershed above Lake Pittsfield 
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Project data were analyzed in two stages.  Preliminary data (1992-1998) were analyzed by Grabow 

(unpublished, 1999), while LPNMP project staff conducted subsequent analysis on complete project 

data (1992 to 2003). Grabow (unpublished, 1999) first evaluated discrete changes in sediment yield, 

then gradual changes and lastly year-by-year changes. To analyze discrete changes in sediment yield, 

Grabow (unpublished, 1999) conducted multiple regression analysis on data from 1992-1998 using  

the variables „period‟, „season‟ and „discharge‟. The variable „period‟ defined data from 1992 to 1996 

as being pre-BMP, while data from 1997-1998 was defined as post-BMP. Sediment yield per storm 

event was the dependent variable.  Storm water discharge, period and season (winter/spring and 

summer/fall) were explanatory variables. Grabow (unpublished, 1999) used the nonparametric 

Kendall‟s tau-b (Kendall, 1938) to corroborate findings from the test for gradual change in sediment 

yield from storm events from 1992 to 1998. Analysis of Covariance (ANCOVA) was used to detect 

differences in sediment yield between specific years. The data were log transformed due to the 

skewness of the data. Further details on these procedures can be found in Grabow et al. (1999a, b, and 

c).  

 

Multiple regression analysis was also used to analyze updated data covering 1992 to 2003 consistent 

with Grabow‟s (unpublished, 1999) methodology.  As before, the variables „season,‟ „discharge,‟ and 

„period‟ were used as explanatory variables, with the „period‟ variable redefined as pre-BMP (1992–

1996) and post-BMP (1997-2003). Storm event sediment yield was the dependent variable.  Storm 

water discharge, period and season (winter/spring and summer/fall) were explanatory variables. 

Statistical tests and results are summarized in Table 1. Kendall tau b and ANCOVA results for gradual 

and yearly change in sediment yield from storm events from 1992 to 2003 will be published 

elsewhere. All statistical analyses were done using appropriate SAS procedures (SAS Institute 2001). 

The impact of potential differences in the intensity of individual storm events was not examined in this 

study and could affect conclusions presented here regarding trends in erosion and sediment yield. The 

authors are in the process of investigating this issue. 

 
Monitoring Results and Discussion 
 

Lake sedimentation survey data provided information on the effectiveness of earlier erosion 

control programs. Additional analysis of previous data (Bogner 1979 and 1986; Lee 1981; Lee 

et. al 1983‟ Roseboom et. al 1993; and Allgire 1993) and data collected during the LPNMP 

project revealed that past erosion control efforts (primarily vegetative, using no-till cultivation) 

were somewhat effective and enhanced the impacts of BMPs installed during the monitoring 

period of the LPNMP. Traditional BMPs continued to be installed during the LPNMP but the 

primary BMPs installed during this time included WASCOBs and a few habitat restoration 

strategies (e.g., in-stream riffle and pool structures). 

 

 Data were collected and analyzed from stations B, C, D and H, which were still operational after 

1995. Due to the small size of subwatershed H and correspondingly small discharge events, and 

because few WASCOBs were installed in this subwatershed, the existing data from this station 

are not addressed in detail in this article. 

 

The network of WASCOBS significantly reduced delivery of sediment from stations B, C and D.  

Sediment yields from individual storm events at stations C and D both before and after the 

WASCOBs and SRB were installed can be viewed in Figures 5 and 6. In Grabow‟s (1999) 
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multiple regression analyses, the variable „period‟ was significant at α=0.01, and pre- and post-

BMP sediment yield data at stations C and D indicated that sediment yields dropped by 45% and 

48%, respectively (Grabow 1999). Sediment yields in 1998 in subwatershed C (after construction 

of upland WASCOBs) were 1.1 – 2.2 kg/ha lower than in 1993-1994 (before construction of 

upland WASCOBs) (Figure 5). Updated data analysis show similar results, where multiple 

regression analysis on sediment yield data over the entire project period (from 1993 to 2003) 

show decreases of 68% and 61% at stations C and D, respectively (Table 1). 
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Figure 5. Sediment yields from storm events, monitoring station C, 1992-2003.  

The number of WASCOBs cited represents the cumulative number constructed 

above the monitoring station. 
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Figure 6. Sediment yields from storm events at monitoring station D, 1992-2003.  

The number of WASCOBs cited represents the cumulative number constructed 

above the monitoring station. 
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 Table 1. Summary of Findings by Station
1 

(modified from Grabow (1999)) 

Station  Analysis Method
3
 

 
Period 

covered 
Pre/Post Yearly Gradual 

B 
1992-1998 90% reduction 

1997 and 1998 

lower than all 

previous years 

Significant trend, 

reduction from 330 to 70 

kg at avg flow  (79% 

reduction) 

1992-2003 91% reduction* -- -- 

 

C 

1992-1998 45% reduction 

1998 lower than 

1993, 1994 and 

1996 

No significant trend over 

period covered 

1992-2003 67.8% reduction* -- -- 

 

D
2
 

1992-1998 48% reduction 

1998 lower than 

1993 and 1996, 

higher than 1992.  

1996 higher than all 

other years 

No significant trend over 

period covered 

1992-2003 61% reduction* -- -- 
 

       1Sediment yield and reductions based on average flow 
       2 No data collected in 1997 
       3 All statistical results presented are significant at α=0.05 

     * These results were obtained by the authors. All other results were obtained by Grabow (unpublished, 1999) 

Of all the stations monitored, station B showed the most dramatic reduction in sediment delivery 

presumably because of its location at the SRB (See Figures 4 and 7). Sediment loads measured at 

station B declined from 8480 t/yr (4200 kg/ha/yr), before construction of the SRB in 1996, to 328 t/yr 

(162 kg/ha/yr) after construction of the SRB. As with stations C and D, multiple regression analysis of 

sediment yield data from Station B using the variable „period,‟ as defined by Grabow (1999) showed 

the variable „period‟ was significant at α=0.01 and that pre- and post-BMP sediment yield data 

suggest a 90% reduction in sediment yield at station B (Grabow 1999). Results from statistical tests 

for yearly and gradual changes in sediment yield corroborate with those from tests for discrete 

changes, except for tests for gradual change at stations C and D, which were not significant (Table 1). 

Multiple regression analysis results from sediment yield data at station B over the entire project period 

(1992-2003) also show almost 91% reduction between pre-BMP vs. post-BMP period (Table 1). 

Impressive storm events occurring in 2001 and 2002 produced significant sediment yields with 

WASCOBs in place, yet sediment passing station B was still about half of what had been transported 

prior to WASCOB construction (895 tons in 2001 and 611 tons in 2002 vs. 8480 tons/yr before SRB 

construction) (Figure 7).  

 

Reduction of sediment yield as a result of WASCOB installation was also apparent during 

individual seasons. In Illinois, the winter-spring season is the period of highest surface water run-

off rates and sediment discharge during the year due to the prevalence of frozen soil and lack of 
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vegetation on land surfaces (Roseboom et al. unpublished, 2001). This season is characterized by 

high soil moisture content, high-intensity storms, and highest annual discharge events. Average 

sediment concentrations and discharge during the winter-spring period (January 1-July 30) from 

1992 to 2003 at stations C and D are shown in Figure 8. Winter and spring storms at both 

stations produced high average sediment concentrations from 1993 to 1996. After drought 

conditions in 1997, average sediment concentrations remained lower, despite high discharges in 

2001 and 2002. Results also show lower yield of sediment per hectare-meter of water discharge 

after 1997 (Figure 9). These components of analysis support the overall trend of reduced 

sediment yields.  

 

Decreased total sediment yield and average sediment concentrations calculated from data 

collected at stations C and D during the LPNMP monitoring project does not appear to be due to 

reduced precipitation associated with seasons. Analysis of annual precipitation data obtained 

from the Mid-Western Regional Climate Center (Station name: Pittsfield No. 2, Station ID: 

116837) revealed that total annual precipitation over the project period showed no increasing or 

decreasing trend and winter and spring precipitation actually increased over time. Stations C and 

D, however, had a spike in sediment delivery in 2002 (Figure 8) either because total annual 

precipitation for 2002 was higher than average annual precipitation over the project period 

(1092.2 mm/yr vs. 952.5 mm/yr, Mid-Western Regional Climate Center, 2008) or because of 

other concerns still under investigation. 
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Figure 7. Total sediment yield, monitoring station B, 1992-2003.  The number of 

WASCOBs cited represents the cumulative number constructed above the 

monitoring station. 
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As such, the influence of drought conditions has been ruled out with the clear exception of the 

1997 drought, which had significantly low total winter-spring precipitation and no appreciable 
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discharge events. As briefly suggested earlier in this article, the impact of potential differences in 

the intensity of individual storm events could affect conclusions presented here regarding trends 

in erosion and sediment yield, therefore the authors are continuing to investigate this issue.  
 

One exception to the decreasing trend in sediment yield after WASCOB installation is apparent 

from a large area in subwatershed D. In 1996 and 1998, sediment yield doubled even though 

approximately 45% of subwatershed D drained through several WASCOBs before reaching the 

Blue Creek mainstem. The increase in sediment yield as monitored at station D was found to 

coincide with massive channel erosion in the stream segment downstream of the installed 

WASCOBs (Roseboom et al. 2001). While definitive proof of cause and effect is lacking, the 

authors believe it is possible that the stream became more unstable as less sediment was being 

transported to the channel downstream of WASCOB construction in that portion of subwatershed 

D. For example, Simon and Darby (1977) related that various types of grade-control structures 

have been successfully used to arrest the upstream propagations of knickpoints and ensuing 

degradation. However, Simon and Darby (1977) further indicated that if the structure ponds 

water as a dam, resulting in sediment deposition upstream from the structure, a new wave of 

degradation is induced by „clear water flows‟ downstream.  This same geomorphic response 

seems to have occurred in Blue Creek. Lower or no significant sediment reduction from 

statistical tests for gradual change in sediment yields at stations C and D could also possibly be 

due to the channel adjustment as a result of BMP installation (clear water flows) (Grabow 1999). 

By applying adaptive management concepts, further channel stabilization and stream system 

naturalization and restoration was implemented to counteract downstream channel erosion 

potentially initiated by the construction of WASCOBs. Nonetheless, it is still possible that 

channel degradation was initiated because of hydraulic adjustments caused by other land 

treatments. 

 

The data also show that topography influences soil erosivity. Forested and pasture areas on 

steeper slopes (in subwatershed C) contributed more sediment than row-cropped fields in flatter 

areas (in subwatershed D). Stream monitoring results from 1993 and 1994 indicated that mean 

event sediment yield from station D (272 t and 330 t per event) was at least half that from station 

C (624 and 918 t per event). Though soils in both subwatersheds C and D are of the same age, 

the steeper topography in subwatershed C renders the soil more erosive, leading to more intricate 

drainage and steeper valley slope. 

 

Twelve pool and riffle structures were constructed within a key segment of the channel in 

subwatershed D in 1998 as a multi-objective solution for stabilizing the channel system (Figure 

10). These structures were funded by a separate contract from the NMP funds (including federal 

Clean Water Act Section 319 and state Conservation 2000 funds). The pool and riffle structures 

were installed specifically to mimic natural stream pools and riffles by stabilizing the channel 

bed and banks, providing quality in-stream habitat and aeration for fish and other aquatic species, 

and enhancing aesthetics. An example of the pool and riffle structures is shown in Figure 11.  
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Annual inspections and video and photo-documentation from 1998 to 2003 indicate that the pool 

and riffle structures have stabilized streambanks and the channel bed and reduced sediment input 

into Lake Pittsfield. Formerly bare eroding stream banks are now vegetated and the riffle 
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structures have become somewhat embedded by vegetation growth. Mass wasting sites along the 

channel have also stabilized. 

  

Dredging operations in the lake were carried out in 1999 after excessive erosion in the watershed 

and sediment transport to the lake was better controlled. The uppermost 7 ha of Lake Pittsfield 

were dredged to an average depth of 5.5 m, removing 167,777 m
3
 of sediment. Sediment yield 

data through 2003 indicated that erosion control features continue to function very well, 

especially since construction of the SRB and pool and riffle structures.  

 
Conclusions 
 
The network of WASCOBs and SRB, enhanced by existing erosion control strategies, has 

reduced sediment yields into Lake Pittsfield. Also, project experience has shown that the highest 

levels of erosion and sediment transport tend to occur in physiographic areas with the most 

topographic relief, loess soils and steepest slopes, and are somewhat independent of land use and 

land cover. The very different nature in slopes of the subwatersheds in the study area 

(subwatersheds C and D) illustrate the need to consider different water and soil erosion control 

management applications for each area based on soils, drainage patterns, slope, and other soil 

geomorphic and physiographic factors.  

 

Another important finding of the project is that channel and near channel sources such as 

unstable streambanks and streambeds are significant contributors to watershed sediment yield.  

Such sources contribute a significant or even dominant portion of overall sediment loads to 

streams.  Furthermore, watershed managers need to consider that stream channel instability can 

be forced by both upstream and downstream control measures. In the Blue Creek watershed, 

sediment detention by WASCOBs, and perhaps other land treatments may have reduced 

sediment transport, but induced or increased the rate of lateral migration (streambank erosion) or 

downcutting (channel incision). As such, it is important to consider addressing the equilibrium of 

the stream channel system by using appropriate channel design techniques as a component of any 

regular conservation land treatment project. This is of particular importance downstream of 

sediment control structures. Also, further research is still necessary on channel equilibrium, 

stream channel threshold levels, sediment yields and specific impacts of individual storm events. 

 

Several meaningful partnerships were formed during the course of this project. Coordinating 

participants include the USEPA, IEPA, Illinois Department of Natural Resources (IDNR) Office 

of Resource Conservation and ISWS, Illinois Department of Agriculture, USDA FSA and 

NRCS, Pike County SWCD, City of Pittsfield, Illinois Farm Bureau, and private landowners. 

 

Commitment by the USEPA and IEPA to monitor Lake Pittsfield and its watershed was 

instrumental for the ISWS to obtain the necessary information about the system to reduce 

sediment delivery to Lake Pittsfield. The 1992-2003 monitoring data offers a science-based 

framework to focus land treatment more efficiently and effectively. Today, the biological and 

water-supply functions of Lake Pittsfield are better protected than before. Data from this project 

effort continue to help evaluate the channel design techniques installed (pools and riffles) and 

guide the operation and maintenance of them. 
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